Tag Archives: gear drive motor

China Professional ZD Factory Price Speed Reduction Constant High Torque Right Angle Soft Tooth Surface Brushless Gear Motor cycloidal drive dimensions

Product Description

ZD Factory Price Speed Reduction Constant High Torque Right Angle Soft Tooth Surface Brushless Gear Motor
 

Detailed Photos

Related BLDC Motors

Product Parameters

Main data:
1. Basic specification: DC24V, 60W, 2500RPM S1, B CLASS, IP20, IP40. OR12V, 48V. 250W. Customized products are welcome.
2. Rated torque of bare motor: 318mN. M, 229mNm
3. No-load noise of whole motor: <50dB, L=50cm
4. VE: AC66V, 1S, 5mA
5. Insulation resistance: >20MΩ 500V, >20MΩ 500V
6. Life: 2500H, 4000H
7. Ambient request: RoHS
8. Gear Ratio: 8.5, 12.5, 13

Company Profile

 

FAQ

 

Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge. 

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Please contact us if you have detailed requests, thank you !

Application: Motor, Motorcycle, Machinery, Agricultural Machinery
Function: Change Drive Torque, Speed Changing, Speed Reduction
Layout: Cycloidal
Hardness: Soft Tooth Surface
Installation: Horizontal Type
Step: Double-Step
Customization:
Available

|

Customized Request

helical gearbox

Condition Monitoring of Cyclone Gearboxes

Whether you’re considering using a cycloidal gearbox in your home, office, or garage, you’ll want to make sure it’s made of quality material. You also want to make sure it’s designed properly, so it won’t be damaged by vibrations.

Planetary gearboxes

Compared to cycloidal gearboxes, planetary gearboxes are lighter and more compact, but they lack the precision and durability of the former. They are better suited for applications with high torque or speed requirements. For this reason, they are usually used in robotics applications. But, cycloidal gearboxes are still better for some applications, including those involving shock loads.
There are many factors that affect the performance of gearboxes during production. One of these is the number of teeth. In the case of planetary gearboxes, the number of teeth increases with the number of planets. The number of teeth is reduced in cycloidal gearboxes, which results in higher transmission ratios. These gearboxes also have lower breakaway torques, which means that they can be controlled more easily by the user.
A cycloid gearbox is comprised of three main parts: the ring gear, the sun gear, and the input shaft. The ring gear is fixed in the gearbox, while the sun gear transmits the rotation to the planet gears. The input shaft transfers motion to the sun gear, which in turn transmits it to the output shaft. The output shaft has a larger torque than the input shaft.
Cycloid gears have better torsional stiffness, lower wear, and lower Hertzian contact stress. However, they are also larger in size and require highly accurate manufacturing. Cycloid gears can be more difficult to manufacture than involute gears, which require large amounts of precision.
Cycloid gears can offer transmission ratios up to 300:1, and they can do this in a small package. They also have lower wear and friction, which makes them ideal for applications that require a high transmission ratio.
Cycloid gearboxes are usually equipped with a backlash of about one angular minute. This backlash provides the precision and control necessary for accurate movement. They also provide low wear and shock load capacity.
Planetary gearboxes are available in single and two-stage designs, which increase in length as stages are added. In addition to the two stages, they can be equipped with an optional output bearing, which takes up mounting space. In some applications, a third stage is also available.

Involute gears

Generally, involute gears are more complex to manufacture than cycloidal gears. For example, an involute gear tooth profile has a single curve while a cycloidal gear tooth profile has two curves. In addition, the involute curve is not within the base circle.
The involute curve is a very important component of a gear tooth and it can significantly influence the quality of contact meshing between teeth. Various works have been done on the subject, mainly focusing on the operating principles. In addition, the most important characteristic of the double-enveloping cycloid drive is its double contact lines between the meshing tooth pairs.
Cycloid gears are more powerful, less noisy, and last longer than involute gears. They also require less manufacturing operations during production. However, cycloid gears are more expensive than involute gears. Involute gears are more commonly used in linear motions while cycloid gears are used for rotary motions.
Although cycloid gears are more technically advanced, involute gears have the superior quality and are more aesthetically pleasing. Cycloid gears are used in various industrial applications such as pumps and compressors. They are also widely used in the watch industry. Nevertheless, involute gears have not yet replaced cycloid gears in the watch industry.
The cycloid disc has a number of pins around its outer edge, while an involute gear has only a single curve for the teeth. In addition, cycloid gears have a more robust and reliable design. Involute gears, on the other hand, have a cheaper rack cutter and less expensive involute teeth.
The cycloid disc’s transmission accuracy is about 98.5%, while the ring gear’s transmission accuracy is about 96%. The cycloid disc’s rotational velocity has a magnitude of 3 rad/s. A small change in the center distance does not affect the transmission accuracy. However, rotational velocity fluctuation can affect the transmission accuracy.
Cycloid gears also have the cycloid gear disc’s rotational velocity. The disc has N lobes. However, the cycloid gear disc’s transmission accuracy is still not perfect. This is because of the large rotational angles between the lobes. This also makes it difficult to manufacture.helical gearbox

Vibrations

Using modern techniques for vibration diagnostics and data-driven methods, this article presents a new approach to condition monitoring of cycloidal gearboxes. This approach focuses on detecting the root cause of gearbox failure. The article aims to provide a unified approach to gear designers.
A cycloidal gearbox is a high-precision gearbox that is used in heavy-duty machines. It has a large reduction ratio, which makes it necessary to have a very large input speed. Cycloid gears have high accuracy, but they are susceptible to vibration issues. In this article, the authors describe how a cycloidal gearbox works and how vibrations are measured. They also show how this gearbox can be used to detect faults.
The gearbox is used in positioners, multi-axis robots, and heavy-duty machines. The main characteristics of this gearbox are the high accuracy, the overload capacity, and the large reduction ratio.
There is little documentation on vibrations and condition monitoring of cycloidal gearboxes. The authors describe their approach to the problem, using a cycloidal gearbox and a testing bench. Their approach involves measuring the frequency of the gearbox with different input speeds.
The results show a good separation between the healthy and damaged states. Fault frequencies show up in the lower orders of frequencies. Faults can be detected using binning, which eliminates the need for a tachometer. In addition, binning is combined with Principal Component Analysis to determine the state of the gearbox.
This method is compared to traditional techniques. In addition, the results show how binning can be used to calculate the defect frequencies of the bearings. It is also used to determine the frequencies of the components.
The signals from the test bench are acquired using four sensors. These sensors are medium sensitivity 100 mV/g accelerometers. The signals are then processed using different signal processing techniques. The results show that the vibration signals are correlated with the internal motion of the gearbox. This information is used to identify the internal frequency of the transmission.
The frequency analysis of vibration signals is performed in cyclostationary and noncyclostationary conditions. The signals are then analyzed to determine the magnitude of the gear meshing frequency.helical gearbox

Design

Using precision gearboxes, servomotors can now control heavy loads at high speed. Unlike cam indexing devices, cycloidal gears provide extremely accurate positioning and high torque. They also provide excellent torsional stiffness and shock load capacity.
Cycloid gears are specially designed to minimize vibration at high RPM. Unlike involute gears, they are not stacked, which reduces friction and forces experienced by each tooth. In addition, cycloidal gears have lower Hertzian contact stress.
Cycloid gears are often used in multi-axis robots for positioners. They can provide transmission ratios as high as 300:1 in a compact package. They are also used in first joints in heavy machines. However, they require extremely accurate manufacturing. They are also more difficult to produce than involute gears.
A cycloidal gearbox is a type of planetary gearbox. Cycloid gears are specially designed for high gear ratios. They also have the ability to provide a large reduction ratio in a single stage. They are increasingly used in first joints in heavy machines. They are also becoming more common in robotics.
In order to achieve a large reduction ratio, the input speed of the gear must be very high. Generally, the input speed is between 500 rpm and 4500 rpm. However, in some cases, the input speed may be lower.
A cycloid is formed by rolling a rolling circle on a base circle. The ratio between the rolling circle diameter and the base circle diameter determines the shape of the cycloid. A hypocycloid is formed by rolling primarily on the inside of the base circle, while an epicycloid is formed by rolling primarily on the outside of the base circle.
Cycloid gears have a very small backlash, which minimizes the forces experienced by each tooth. These gears also have a good torsional stiffness, low friction, and shock load capacity. They also provide the best positioning accuracy.
The cycloidal gearbox was designed and built at Radom University. The design was based on three different cycloidal gears. The first pair had the external profile at the nominal dimension, while the second pair had the profile minus tolerance. The load plate had threaded screw holes arranged 15 mm away from the center.
China Professional ZD Factory Price Speed Reduction Constant High Torque Right Angle Soft Tooth Surface Brushless Gear Motor   cycloidal drive dimensionsChina Professional ZD Factory Price Speed Reduction Constant High Torque Right Angle Soft Tooth Surface Brushless Gear Motor   cycloidal drive dimensions
editor by CX 2023-10-20

China Custom Factory Customization High Input Alloy Reducer and Slasher Gearbox for 1000W Servo Motor cycloidal drive gear ratio

Product Description

Product Description

Factory customization high input Alloy reducer and slasher gearbox for 1000W servo motor

WFH series Alloy reducer and slasher gearbox for 5 axis machining center developed and manufactured by WEITENSTAN together with German and ZheJiang technicians for many years.

High precision miniature cycloidal gearbox has the characteristics of smaller, ultra-thin, lightweight and high rigidity, anti-overload and high torque. With good deceleration performance, smooth operation and accurate positioning can be achieved. Integrated design, can be directly connected with the motor, to achieve high precision, high rigidity, high durability and other advantages. It is designed for high speed ratio, high geometric accuracy, low motion loss, large torque capacity and high stiffness applications. The compact design (minimum OD ≈40mm, currently the world’s smallest precision cycloidal pin-wheel reducer) allows it to be installed in limited Spaces.

Reducer drawings

 

 

Detailed Photos

 

 

Product Advantage

Factory customization high input Alloy reducer and slasher gearbox for 1000W servo motor

advantages:

 

1, fine precision cycloidal structure

Ultra flat shape is achieved through differential reduction mechanism and thin cross roller bearing, contributing to the compact size of the equipment. The combination of small size and unmatched superior parameters achieves the best combination of performance, price and size (high cost performance).

 

2. Excellent accuracy (transmission loss ≤1 arcmin)

Through the complex meshing of precision cycloid gear and high precision roller pin, higher transmission accuracy is achieved while maintaining small size and high speed ratio.

 

3, high rigidity

Increase the mesh rate to disperse the load, so the rigidity is high.

 

4. High overload capacity

It maintains trouble-free operation under abnormally low noise and vibration conditions while ensuring excellent overturning and torsional stiffness parameters. Integrated axial radial cross roller bearings, high load capacity and overload capacity of the reducer, can ensure users to provide a variety of temperature range of applications.

 

5, the motor installation is simple

Electromechanical integration design, can be directly connected with the motor, any brand of motor can be installed directly, without adding any device.

 

6. Maintenance free

Seal grease to achieve maintenance free. No refueling, no mounting direction restrictions.

 

7, stable performance

The manufacturing process of high wear-resistant materials and high precision parts has been certified by ISO9000 quality system, which guarantees the reliable operation of the reducer.

 

Product Classification

 

WF Series
High Precision Miniature Reducer

WF series is a high precision micro cycloidal reducer with flange, which has a wide range of applications. This series of reducers includes precise reduction mechanisms and radial – axial roller bearings. The unique design allows load to act directly on the output flange or housing without additional bearings. WF series reducer is characterized by module design, can be installed through the flange motor and reducer, belongs to the motor directly connected reducer.

WFH Series
High Precision Miniature Reducer

WFH series is a hollow form of high precision miniature cycloidal reducer, wire, compressed air pipeline, drive shaft can be through the hollow shaft, non-motor direct connection type reducer. The WFH series is fully sealed, full of grease and includes precise deceleration mechanism and radial – axial roller bearings. The unique design allows load to be acted directly on the output flange or housing without additional bearings.

WR Series
high-precision corner reducer

The WR series is a flange output corner reducer. Like the WF and WFH series, it is a high-precision reducer (backlash less than 1 arc.min), and the level 2 can also be within 1 arc.min, which is higher than other types. Corner type reducer. It can replace the harmonic drive reducer, and its life and rigidity are more than 3 times that of the harmonic.

 

Product Parameters

Size reduction ratio Rated output moment Allowable torque of start and stop Instantaneous allowable moment Rated input speed Maximum input speed Tilt stiffness Torsional stiffness No-load starting torque Transmission accuracy Error accuracy Moment of inertia Weight
  Axis rotation Shell rotation Nm Nm Nm rpm rpm Nm/arcmin Nm/arcmin Nm arcmin arcmin kg-m² kg
WFH07 21 20 15 30 45 3000 6000 6 1.1 0.12 P1≤±1           P2≤±3 P1≤±1           P2≤±3 0.52 0.42
41 40 0.11 0.47
WFH17 21 20 50 100 150 3000 6000 28 6 0.21 P1≤±1           P2≤±3 P1≤±1           P2≤±3 0.88 0.85
41 40 0.18 0.72
61 60 0.14 0.69
WFH25 21 20 110 220 330 3000 5500 131 24 0.47 P1≤±1           P2≤±3 P1≤±1           P2≤±3 6.12 2
31 30 0.41 5.67
41 40 0.38 4.9
51 50 0.35 4.56
81 80 0.31 4.25
WFH32 25 24 190 380 570 3000 4500 240 35 1.15 P1≤±1           P2≤±3 P1≤±1           P2≤±3 11 4.2
31 30 1.1 10.8
51 50 0.77 9.35
81 80 0.74 8.32
101 100 0.6 7.7
WFH40 25 24 320 640 960 3000 4000 377 50 1.35 P1≤±1           P2≤±3 P1≤±1           P2≤±3 13.2 6.6
31 30 1.32 12.96
51 50 0.92 11.22
81 80 0.81 9.84
121 120 0.72 8.4

Installation Instructions

 

Company Profile

 

Q: Speed reducer grease replacement time
A: When sealing appropriate amount of grease and running reducer, the standard replacement time is 20000 hours according to the aging condition of the grease. In addition, when the grease is stained or used in the surrounding temperature condition (above 40ºC), please check the aging and fouling of the grease, and specify the replacement time.

Q: Delivery time
A: Fubao has 2000+ production base, daily output of 1000+ units, standard models within 7 days of delivery.

Q: Reducer selection
A: Fubao provides professional product selection guidance, with higher product matching degree, higher cost performance and higher utilization rate.

Q: Application range of reducer
A: Fubao has a professional research and development team, complete category design, can match any stepping motor, servo motor, more accurate matching.

 

Shipping Cost:

Estimated freight per unit.



To be negotiated
Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Customization:
Available

|

Customized Request

helical gearbox

How to Calculate Transmission Ratio for a Cycloidal Gearbox

Using a cycloidal gearbox can be very useful in a wide variety of situations. However, it’s important to understand how to use it properly before implementing it. This article discusses the benefits of using a cycloidal gearbox, how to calculate the transmission ratio, and how to determine the effects of dynamic and inertial forces on the gearbox.

Dynamic and inertial effects

Various studies have been done to study the dynamic and inertial effects of cycloidal gearboxes. These studies have been performed using numerical, analytical and experimental methods. Depending on the nature of the load and its distribution along the gear, a variety of models have been developed. These models use finite element method to determine accurate contact stresses. Some of these models have been developed to address the nonlinear elasticity of contacts.
Inertial imbalance in a cycloidal gearbox causes vibration and can affect the efficiency of the device. This can increase mechanical losses and increase wear and tear. The efficiency of the device also depends on the torque applied to the cycloidal disk. The effectiveness of the device increases as the load increases. Similarly, the nonlinear contact dynamics are also associated with an increase in efficiency.
A new model of a cycloidal reducer has been developed to predict the effects of several operational conditions. The model is based on rigid body dynamics and uses a non-linear stiffness coefficient. The model has been validated through numerical and analytical methods. The model offers drastic reduction in computational costs. The model allows for a quick analysis of several operational conditions.
The main contribution of the paper is the investigation of the load distribution on the cycloidal disc. The study of this aspect is important because it allows for an analysis of the rotating parts and stresses. It also provides an indication of which gear profiles are best suited for optimizing torque transmission. The study has been conducted with a variety of cycloidal gearboxes and is useful in determining the performance of different types of cycloidal gearboxes.
To study the load distribution on the cycloidal disc, the authors investigated the relationship between contact force, cycloidal gearboxes and different gear profiles. They found that the non-linear contact dynamics have a large impact on the efficiency of a cycloidal gearbox. The cycloidal gearbox is an ideal solution for applications that involve highly dynamic servos. It can also be used in machine tool applications and food processing industries.
The study found that there are three common design principles of cycloidal reducers. These are the contact force distribution, the speed reduction and the trochoidal profile of the cycloidal disc. The trochoidal profile has to be defined carefully to ensure correct mating of the rotating parts. The trochoidal profile provides an indication of which gear profiles are best for optimizing torque transmission. The contact force distribution can be improved by refining the mesh along the disc’s width.
As the input speed increases, the efficiency of the reducer increases. This is because contact forces are constantly changing in magnitude and orientation. A cycloidal reducer with a one tooth difference can reduce input speed by up to 87:1 in a single stage. It also has the ability to handle high-cycle moves without backlash.helical gearbox

Transmission ratio calculation

Getting the correct transmission ratio calculation for a cycloidal gearbox requires a good understanding of what a gearbox is, as well as the product that it is being used for. The correct ratio is calculated by dividing the output speed of the output gear by the input speed of the input gear. This is usually accomplished by using a stopwatch. In some cases, a catalog or product specification may be required. The correct ratio is determined by a combination of factors, such as the amount of torque applied to the mechanism, as well as the size of the gears involved.
A cycloidal gear is a type of gear tooth profile that can be represented using a spline. It is also possible to model a gear with a cycloidal profile by using a spline to connect points against the beginning of a coordinate system. This is important in the design and functionality of a gear.
There are many different gears used in machines and devices. These include the herringbone gear, the helical gear and the spiral bevel gear. The best transmission ratios are typically obtained with a cycloidal gearbox. In addition to ensuring the accuracy of positioning, a cycloidal gearbox provides excellent backlash. Cycloid gears have a high degree of mechanical efficiency, low friction, and minimal moment of inertia.
A cycloidal gearbox is often referred to as a planetary gearbox, though it is technically a single-stage gearbox. In addition to having a ring gear, the gearbox has an eccentric bearing that drives the cycloidal disc in an eccentric rotation. This makes the cycloidal gearbox a good choice for high gear ratios in compact designs.
The cycloid disc is the key element of a cycloidal gearbox. The cycloid disc has n=9 lobes, and each lobe of the disc moves by a lobe for every revolution of the drive shaft. The cycloid disc is then geared to a stationary ring gear. The cycloidal disc’s lobes act like teeth on the stationary ring gear.
There are many different gears that are classified by the profile of the gear teeth. The most common gears are the involute and helical gears. Most motion control gears include spur designs. However, there are many other types of gears that are used in various applications. The cycloidal gear is one of the more complicated gears to design. The cycloid disc’s outline can be represented using markers or smooth lines, though a scatter chart will also do.
The cycloid disc’s lobes rotate on a reference pitch circle of pins. These pins rotate 40 deg during the eccentric rotation of the drive shaft. The pins rotate around the disc to achieve a steady rotation of the output shaft.
The cycloid disc’s other obvious, and possibly more important, feature is the’magic’ number of pins. This is the number of pins that protrude through the face of the disc. The disc has holes that are larger than the pins. This allows the pins to protrude through the disc and attach to the output shaft.helical gearbox

Application

Whether you’re building a robot drive or you’re simply looking for a gearbox to reduce the speed of your vehicle, a cycloidal gearbox is a great way to achieve a high reduction ratio. Cycloidal gearboxes are a low-friction, lightweight design that has an extremely stable transmission. They are suitable for industrial robots and can be used in many applications, including positioning robots.
Cycloidal gearboxes reduce speed by using eccentric motion. The eccentric motion enables the entire internal gear to rotate in wobbly cycloidal motion, which is then translated back into circular rotation. This eliminates the need for stacking gear stages. Cycloidal gearboxes also have less friction, higher strength, and greater durability than conventional gearboxes.
The cycloidal gearbox is also used in a number of applications, including marine propulsion systems, and robot drives. Cycloidal gearboxes reduce vibration by using offset gearing to cancel out vibrations.
Cycloidal gears have lower friction, higher strength, and better torsional stiffness than involute gears. They also have a reduced Hertzian contact stress, making them better than involute gears for use with shock loads. They also have a smaller size and weight than conventional gearboxes, and they have a higher reduction ratio than involute gears.
Cycloidal gears are typically used to reduce the speed of motors, but they also offer a number of other advantages. Cycloidal gearboxes have a smaller footprint than other gearboxes, allowing them to fit into confined spaces. They also have low backlash, allowing for precise movement. Cycloidal gears have a higher efficiency, resulting in lower power requirements and lower wear.
The cycloidal disc is one of the most important components of the gearbox. Cycloidal discs are normally designed with a short cycloid, which minimizes the eccentricity of the disc. They are also designed with a shortened flank, resulting in better strength and less stress concentration. Cycloidal discs are typically geared to a stationary ring gear. The cycloid is designed to roll around the stationary ring pins, which push against the circular holes in the disc. Cycloidal gearboxes typically employ two degrees of shift.
Cycloidal drives are ideal for heavy load applications. They also have high torsional stiffness, which makes them highly resistant to shock loads. Cycloidal drives also offer a high reduction ratio, which can be achieved without the need for a large input shaft. They are also compact and have a high service life.
The output shaft of a cycloidal gearbox always has two degrees of shifting, which ensures that the input and output shafts always rotate at a different speed. The output shaft would be a pin casing around the drive disks, which would also allow for easy maintenance.
Cycloidal gearboxes are also very compact and lightweight, so they are ideal for use in industrial robots. The cycloidal gearbox reducer is the most stable, low-vibration reducer in industrial robots, and it has a wide transmission ratio range.
China Custom Factory Customization High Input Alloy Reducer and Slasher Gearbox for 1000W Servo Motor   cycloidal drive gear ratioChina Custom Factory Customization High Input Alloy Reducer and Slasher Gearbox for 1000W Servo Motor   cycloidal drive gear ratio
editor by CX 2023-05-12

China Varitron Cyclo Drive Gear box Speed Reducer Motor D15 teco differential gearbox

Design Number: Varitron Gear Box
Gearing Arrangement: Cycloidal
Output Torque: 7.5 nM & above
Rated Electricity: .37kW – 132kW
Input Pace: 1800 @ 60Hz , 1500 @ 50hz
Output Velocity: 300rpm to .0000012rpm
Enter pole: 2P , 4P , 6P , 8P
Pace Reducer variety: Cyclo Generate Equipment
Manufacturing Regular: ISO , JIS , DIN , CNS , CE , ROHS
Effectiveness: ninety five% on solitary Levels
Packaging Specifics: Equipment box packed in Crate or Wooden bins to ensure Greatest protection and bare minimum injury
Port: Taipei

<>

Varitron Cyclo Generate Equipment box Pace Reducer Motor D15 CZPT

Main Functions

• High Efficency Style
• Sturdy, Sturdy Design
• Clean Operation and Low Sound
• Substantial Shock Load
• Substantial Reliabilty Cycloidal Gear Design Tooth Profile

Varitron Cyclo Travel Equipment Box delivers the functions today’s market needs. High reduction ratios, with no sacrificing performance. Compact designs, large quality 608zz deep groove ball bearing ceramic ball bearing for skateboard without requiring particular motors. Excellent shock load potential, without having obtaining to oversize. The gearbox is deisgn with higher overhung load capacities, without making use of costly particular parts. A precision backlash alternative, with out resorting to unique gearing. All of this, whilst necessitating small routine maintenance.

Specification

Design Quantity Varitron Cyclo Travel Gear box Velocity Reducer Motor D15 CZPT
Pace Reduction Strategy Internal planetary equipment system with trochoidal curved tooth profile design and style pace reduction
Effectiveness 95% for every stage equipment box (Rolling movement minimizes friction and dress in, lowering heat)
Shock Load five hundred% as there are only compressive forces relatively than shear forces on the tooth
Gear Box Mounting Flange or Foot mounting
Gear Reduction Ratio Up to 1:87 for every phase
1:7569 Double stage
1:658,503 Triple Stage
Capacity Assortment .1 to 75kW * 4Pole / .37 to 132kW * 6Pole
Enclosure Entirely enclosed fan cooled sort IP54 or IP55
Energy Resource 3 Phrase 200-480V 50/60Hz (one phrase .2 to 3.7kW)
Thermal Class F Class , H Course
Time Ranking Ongoing Score
Gear Box
Lubrication Technique
Grease lubricated or Oil Lubricated (oil Pump lubrication avaliable)
Approach of Coupling with Pushed Machine Coupling, gears, chain sprocket or belt
Common CE, UL, CSA, CCC, ISO 9001, ISO 14001
Warranty 1 Yr Limited Guarantee

<>
E-Catalog

http://youtu.be/Rf1XaN6iWUo

Applications

Agitators Mixers, Brewing and Distilling, Conveyors, Extruders, High Precision NUP 224E Cylindrical Roller Bearing NJ224 roller bearing Foods business, Steel Mills, Hammer mills,Paper Mills,Lumber Market, Rubber & Plastics Industries, Sewage Disposal Gear, Oil Business,Textile Business, Sugar Sector, Dry Dock Cranes.. and many far more
Packaging & ShippingGearbox will be delievery with crate or wood box.

Created In ZheJiang

Our ServicesWe regularly focus our focus on the good quality administration technique. With our constantly enhanced top quality perform, customers’ pleasure on our goods and support is guaranteed. All our staff just take Complete Quality Assurance as their common objective and established customers’ gratification as their highest precedence.

Why Associate with Varitron?

We Consider Our Clients as Our Friends and Families, and We do Imagine in the CZPT Scenario for Creating up Prolonged-Term Relationship.

• Innovation
Give durable, substantial efficiency steady goods and solutions.• High quality Deliver regularly outstanding performance and go after each possible improvement. • PlanetBe a responsible citizen that can make a difference by aiding construct and help sustainable communities. Varitron’s manfucature plant handed thorugh ISO14001• Client Fulfillment Anticipate consumer demands and exceed their expectations in affordability, Agricultural Tractor Forging Sliding Cardan Pto Travel Shaft high quality and on-time shipping and delivery.

Business Info
What you need to know about Varitron Equipment box?

Types of Vehicle Gearboxes

In a vehicle, there are many types of gearboxes available. There are planetary gearboxes, Coaxial helical gearboxes, and skew bevel helical gearboxes, among others. In this article, we’ll cover all of them and help you determine which type of gearbox would be right for your vehicle. Also, we’ll discuss how each differs from the others.
gearbox

planetary gearbox

A planetary gearbox is composed of three main components: a sun gear, an input bevel gear, and an output shaft. A planetary gearbox can have different output torques and ratios. The basic model of a planetary gearbox is highly efficient and transmits 97% of the power input. There are several kinds of planetary gearboxes, depending on the type of operation. In general, there are three types: the simple, the intermediate, and the complex.
The price of a planetary gearbox can vary a lot, and it’s important to know what you’ll need. Different manufacturers produce different planetary gearboxes, so check with a manufacturer to see what they have available. Make sure to check the quality of the planetary gearbox before making a final purchase. In addition, be sure to compare the prices and the availability of a particular product. A quality planetary gearbox will provide years of trouble-free operation and will not break your bank.
Planetary gears feature an integer number of teeth. Each planet has teeth that must mesh with its ring or sun. The number of planets, ring, and tooth count of each gear determine whether the teeth mesh. Some planets have fewer teeth than others, so they mesh better than others. However, compound planets can be more flexible and achieve higher reduction ratios. If you’re looking for a planetary gearbox for your next project, consider getting in touch with a manufacturer who specializes in this technology.
When it comes to construction, a planetary gearbox is no exception. It’s extremely important to choose the right planetary gear for your application, because an imbalance in the planet gear can cause increased wear and failure. Moreover, the compact size of a planetary gear ensures maximum heat dissipation. However, a planetary gear box may require cooling in some applications. A planetary gearbox will make your life easier, and it will give you years of trouble-free operation.

Straight bevel helical gearbox

The Straight bevel helical gearbox has a number of advantages, but it has a relatively short manufacturing process. Its most popular application is in the automotive industry, where it is used in many types of vehicles. Other applications include heavy and light equipment and the aviation and marine industries. Below is a brief introduction to this gearbox type. Read on to learn about its benefits. This type of gearbox is one of the easiest to manufacture.
The spiral bevel gear has larger teeth than straight bevel gears, resulting in a smoother, quieter rotation. It can handle high-speed heavy loads with less vibration. Spiral bevel gears are classified by their tooth form and cutting method. Straight bevel gears are easier to design and manufacture, but spiral bevel gears are more expensive. Both designs are suitable for high-speed, heavy-load operations, and general manufacturing applications.
In addition to being easy to install, the modular bevel gears have many advantages. They have an exceptionally high degree of interchangeability and feature the highest standards of component integrity. They can also be tailored to meet your specific requirements. The advantages of this gearbox type include high precision, optimum performance, and low noise. And because they are modular, they can be produced in a variety of finishes. These include stainless steel, titanium, and bronze.
Straight bevel helical gearbox manufacturers are committed to a high degree of precision in their designs. The radii, torques, and tooth profiles of straight bevel gears are more precisely measured than those of cylindrical bevel gears. The same calculations are used for all traditional bevel gear generators. This ensures that your 5-axis milled bevel gear sets have the same calculations and layout.
gearbox

Coaxial helical gearbox

The Coaxial helical gearbox is a highly efficient transmission system that is well suited for light-duty applications. Compared to spur-type gearboxes, the real pitch of a Coaxial helical gearbox is low at all helix angles. This is because the coaxial type has the same number of teeth and center gap as the spur gearbox. Coaxial helical gearboxes also have a smaller footprint and are compact.
Several nations have implemented lockdown regulations for Industrial Gearbox trade, threatening the global economy. Several factors have been implicated in COVID-19, including supply chain, market, and financial markets. Experts are monitoring the situation globally and project remunerative prospects for gearbox manufacturers after the crisis. This report depicts the latest scenario and offers a comprehensive analysis of COVID-19’s impact on the entire industry.
This Coaxial helical gearbox features a compact structure and high precision gear. Its three-stage design combines two-stage gears with a single-stage gear, forging high-quality alloy steel for high precision and durability. The gears are serially-designed for easy interchangeability. They are also available in high-frequency heat-treated steel. A Coaxial helical gearbox is the perfect solution for many applications.
Coaxial helical gearboxes have the added benefit of using cylindrical gears instead of shafts. They operate quietly, and have more surface area to interact with. Their fixed angles make them suitable for heavy-duty applications, like in conveyors, coolers, and grinders. Compared to other gearbox types, Helical gearboxes have higher power-carrying capacity. Listed below are the benefits of a Coaxial Helical Gearbox

Skew bevel helical gearbox

A Skew bevel helical gear box is a common type of industrial gearbox. These gearboxes are rigid and compact and can be used in a variety of applications. They are commonly used in heavy-duty applications such as grinding mills, conveyors, and coolers. They are used in many applications to provide rotary motions between non-parallel shafts. They also have the added benefit of high-efficiency in a variety of industries.
Skew bevel helical gear boxes are suitable for heavy loads and are monolithic in construction. This type of gearbox combines the benefits of bevel and helical gears for right-angle torque, which makes it a popular choice for heavy-duty applications. In addition to being a robust and reliable gearbox, these gearboxes are highly customizable and can meet almost any industrial need.
To maximize the efficiency of bevel gears, FE-based tooth contact analysis is used to develop a sophisticated geometry optimization algorithm. The software also allows users to define optimal flank topography by introducing application-specific weightings for specific load levels. With this data, a manufacturing simulation is conducted to determine the best variant. A robust variant combines the benefits of efficiency, load-carrying capacity, and low excitation behavior.
The helical gear can be angled at 90 degrees. This is similar to a spur gear but produces less noise. It can achieve a nine-to-one speed reduction with one stage. However, a helical gear requires a larger driver gear for higher reductions. This gearbox is suitable for speeds from 1:1 to three times. They are often used in the manufacture of motors and generators.
gearbox

Extruder helical gearbox

An extruder helical gearbox is one of the most common industrial gears. It is compact in size and low-power consuming, making it ideal for heavy-duty applications. Extruder helical gearboxes are suitable for a variety of industrial applications, including cement, plastics, rubber, conveyors, and coolers. In addition to its use in plastics and rubber manufacturing, this gearbox is also useful in other low-power applications such as crushers, coolers, and conveyors.
CZPT SG series Extruder Helical Gearboxes are available in Single Screw and Twin Screw Variations. These gears feature a compact design, high power density, and long service life. Axial bearing housing and thrust bearings are mounted on the input shafts. Extruder helical gearboxes can be installed in various positions, including horizontal, vertical, and inclined.
Helicoidal gears are often produced in a modular manner. This design provides multiple benefits, including engineering and performance advantages, modular production, and the highest level of component integrity. A single helical gearbox can be assembled into a larger gearbox if needed, but modular production ensures consistent performance and economy. This modular design is also cost-effective. It is a versatile and reliable solution for a wide range of applications.
In addition to its efficiencies, Extruder helical gearboxes also have a low noise profile. They have no squeal sounds, and they are silent when running. They can transfer more power than conventional gearboxes. This type of gear has been used in the manufacturing of high-quality plastic products for years. They are often used for applications in automotive transmissions. Aside from being quiet, helical gears have higher contact levels and lower vibration.

China Varitron Cyclo Drive Gear box Speed Reducer Motor D15 teco     differential gearbox	China Varitron Cyclo Drive Gear box Speed Reducer Motor D15 teco     differential gearbox
editor by czh 2023-02-17

China Mini Electric Motor Cycloidal Helical Harmonic Gear Speed Reducer Transmission Gearbox cycloidal drive gearbox

Solution Description

Product Description:

1. Flexspline is a hollow flanging common cylinder structure.

two. There is a massive-diameter hollow shaft gap in the middle of the cam of the wave generator. The inner style of the reducer has a assistance bearing.

3. It has a totally sealed construction and is easy to put in. It is very suited for instances the place the wire needs to be threaded from the center of the reducer.
 

Advantages:
1. Higher precision,substantial torque
two. Dedicated technological staff can be on-the-go to supply design and style options
three. Manufacturing facility direct income good workmanship resilient high quality assurance
4. Solution good quality concerns have a one-year warranty time, can be returned for replacement or fix

Organization profile:

 

HangZhou CZPT Technologies Co., Ltd. recognized in 2014, is fully commited to the R & D plant of substantial-precision transmission components. At current, the annual creation capacity can get to 45000 sets of harmonic reducers. We firmly think in good quality very first. All hyperlinks from uncooked materials to completed merchandise are strictly supervised and controlled, which supplies a reliable basis for merchandise quality. Our goods are marketed all more than the country and abroad.

The harmonic reducer and other high-precision transmission parts have been independently designed by the business. Our company spends 20% of its revenue every single yr on the research and improvement of new technologies in the sector. There are 5 individuals in R & D.

Our gain is as below:

one.7 years of marketing encounter

2. 5-individual R & D group to supply you with specialized support

three. It is bought at residence and abroad and exported to Turkey and Eire

four. The solution top quality is certain with a one particular-12 months guarantee

5. Merchandise can be customized

Energy factory:

Our plant has an total campus The variety of workshops is about three hundred Whether it’s from the creation of raw components and the procurement of uncooked supplies to the inspection of concluded products, we are doing it ourselves. There is a full generation system

HST-III Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CZPT torque at start off end The allowable highest of the typical load torque Maximum torque is permitted in an immediate Allow the greatest pace to be entered Regular input velocity is authorized Back hole layout life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 six.2 .six twenty.seven 2.one 7.9 .7 forty.3 4.1 7000 3000 ≤30 10000
80 9 .nine 27 two.seven 12.7 1.three 54.1 5.five
100 9 .nine 32 3.three 12.seven 1.three sixty two.one six.three
17 50 eighteen.4 1.nine 39 four 29.nine three eighty.5 eight.2 6500 3000 ≤30 15000
80 25.3 2.six 49.five 5 31 3.two 100.1 ten.two
one hundred 27.six two.8 62 six.three forty five 4.six 124.two 12.seven
20 fifty 28.eight 2.9 sixty four.4 6.six 39 4 112.7 11.5 5600 3000 ≤30 15000
80 39.1 four 85 eight.8 54 5.five 146.1 fourteen.9
100 46 four.seven 94.three nine.six fifty six 5.8 169.one seventeen.two
120 forty six 4.7 100 10.2 56 five.8 169.1 17.2
160 46 four.seven one hundred 10.2 fifty six 5.eight 169.1 17.two
25 50 forty four.9 four.6 113 eleven.five sixty three 6.5 213.9 21.eight 4800 3000 ≤30 15000
eighty seventy two.five seven.4 158 16.1 a hundred ten.2 293.3 29.9
100 77.1 7.9 181 18.four 124 12.seven 326.6 33.three
one hundred twenty 77.one 7.nine 192 19.six 124 12.7 349.six 35.6
32 fifty 87.4 8.nine 248 25.3 124 twelve.seven 439 forty four.eight 4000 3000 ≤30 15000
eighty one hundred thirty five.seven thirteen.eight 350 35.six 192 19.6 653 sixty six.six
one hundred 157.6 sixteen.1 383 39.one 248 twenty five.3 744 seventy five.9
40 100 308 37.2 660 sixty seven 432 44 1232 126.seven 4000 3000 ≤30 15000

HSG Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CZPT torque at commence end The allowable greatest of the average load torque Maximum torque is allowed in an instantaneous Allow the greatest speed to be entered Average input pace is permitted Back again hole design and style daily life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 seven .seven 23 2.3 nine .9 46 4.7 14000 8500 ≤20 15000
80 10 1 thirty 3.one fourteen one.4 sixty one six.two
one hundred 10 one 36 three.7 14 one.four 70 seven.two
17 50 21 two.1 forty four four.five 34 three.4 91 9 10000 7300 ≤20 20000
80 29 two.9 fifty six 5.7 35 three.six 113 12
100 31 three.2 70 seven.two 51 5.2 143 15
20 50 33 three.three seventy three 7.four 44 4.five 127 thirteen 10000 6500 ≤20 20000
eighty forty four four.five 96 nine.8 sixty one six.two 165 seventeen
one hundred 52 5.three 107 ten.9 64 six.5 191 twenty
a hundred and twenty 52 5.three 113 eleven.five sixty four six.five 191 20
160 52 5.3 120 12.2 64 6.five 191 20
25 50 51 five.2 127 thirteen seventy two 7.3 242 twenty five 7500 5600 ≤20 20000
80 eighty two eight.4 178 18 113 twelve 332 34
a hundred 87 eight.nine 204 21 a hundred and forty fourteen 369 38
one hundred twenty 87 8.nine 217 22 140 14 395 40
32 50 99 10 281 29 one hundred forty fourteen 497 fifty one 7000 4800 ≤20 20000
eighty 153 sixteen 395 40 217 22 738 75
100 178 18 433 forty four 281 29 841 86
forty 100 345 35 738 seventy five 484 49 1400 143 5600 4000 ≤20 20000

Exhibitions:
Software case:

FQA:
Q: What must I provide when I pick a gearbox/speed reducer?
A: The ideal way is to offer the motor drawing with parameters. Our engineer will examine and suggest the most suited gearbox product for your reference.
Or you can also give the under specification as nicely:
1) Sort, design, and torque.
2) Ratio or output speed
three) Functioning issue and link method
four) Quality and mounted device name
five) Enter mode and input speed
6) Motor brand name model or flange and motor shaft dimension

US $290-500
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Machinery, Agricultural Machinery, Hst-I
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step

###

Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 6.2 0.6 20.7 2.1 7.9 0.7 40.3 4.1 7000 3000 ≤30 10000
80 9 0.9 27 2.7 12.7 1.3 54.1 5.5
100 9 0.9 32 3.3 12.7 1.3 62.1 6.3
17 50 18.4 1.9 39 4 29.9 3 80.5 8.2 6500 3000 ≤30 15000
80 25.3 2.6 49.5 5 31 3.2 100.1 10.2
100 27.6 2.8 62 6.3 45 4.6 124.2 12.7
20 50 28.8 2.9 64.4 6.6 39 4 112.7 11.5 5600 3000 ≤30 15000
80 39.1 4 85 8.8 54 5.5 146.1 14.9
100 46 4.7 94.3 9.6 56 5.8 169.1 17.2
120 46 4.7 100 10.2 56 5.8 169.1 17.2
160 46 4.7 100 10.2 56 5.8 169.1 17.2
25 50 44.9 4.6 113 11.5 63 6.5 213.9 21.8 4800 3000 ≤30 15000
80 72.5 7.4 158 16.1 100 10.2 293.3 29.9
100 77.1 7.9 181 18.4 124 12.7 326.6 33.3
120 77.1 7.9 192 19.6 124 12.7 349.6 35.6
32 50 87.4 8.9 248 25.3 124 12.7 439 44.8 4000 3000 ≤30 15000
80 135.7 13.8 350 35.6 192 19.6 653 66.6
100 157.6 16.1 383 39.1 248 25.3 744 75.9
40 100 308 37.2 660 67 432 44 1232 126.7 4000 3000 ≤30 15000

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 7 0.7 23 2.3 9 0.9 46 4.7 14000 8500 ≤20 15000
80 10 1 30 3.1 14 1.4 61 6.2
100 10 1 36 3.7 14 1.4 70 7.2
17 50 21 2.1 44 4.5 34 3.4 91 9 10000 7300 ≤20 20000
80 29 2.9 56 5.7 35 3.6 113 12
100 31 3.2 70 7.2 51 5.2 143 15
20 50 33 3.3 73 7.4 44 4.5 127 13 10000 6500 ≤20 20000
80 44 4.5 96 9.8 61 6.2 165 17
100 52 5.3 107 10.9 64 6.5 191 20
120 52 5.3 113 11.5 64 6.5 191 20
160 52 5.3 120 12.2 64 6.5 191 20
25 50 51 5.2 127 13 72 7.3 242 25 7500 5600 ≤20 20000
80 82 8.4 178 18 113 12 332 34
100 87 8.9 204 21 140 14 369 38
120 87 8.9 217 22 140 14 395 40
32 50 99 10 281 29 140 14 497 51 7000 4800 ≤20 20000
80 153 16 395 40 217 22 738 75
100 178 18 433 44 281 29 841 86
40 100 345 35 738 75 484 49 1400 143 5600 4000 ≤20 20000
US $290-500
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Machinery, Agricultural Machinery, Hst-I
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step

###

Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 6.2 0.6 20.7 2.1 7.9 0.7 40.3 4.1 7000 3000 ≤30 10000
80 9 0.9 27 2.7 12.7 1.3 54.1 5.5
100 9 0.9 32 3.3 12.7 1.3 62.1 6.3
17 50 18.4 1.9 39 4 29.9 3 80.5 8.2 6500 3000 ≤30 15000
80 25.3 2.6 49.5 5 31 3.2 100.1 10.2
100 27.6 2.8 62 6.3 45 4.6 124.2 12.7
20 50 28.8 2.9 64.4 6.6 39 4 112.7 11.5 5600 3000 ≤30 15000
80 39.1 4 85 8.8 54 5.5 146.1 14.9
100 46 4.7 94.3 9.6 56 5.8 169.1 17.2
120 46 4.7 100 10.2 56 5.8 169.1 17.2
160 46 4.7 100 10.2 56 5.8 169.1 17.2
25 50 44.9 4.6 113 11.5 63 6.5 213.9 21.8 4800 3000 ≤30 15000
80 72.5 7.4 158 16.1 100 10.2 293.3 29.9
100 77.1 7.9 181 18.4 124 12.7 326.6 33.3
120 77.1 7.9 192 19.6 124 12.7 349.6 35.6
32 50 87.4 8.9 248 25.3 124 12.7 439 44.8 4000 3000 ≤30 15000
80 135.7 13.8 350 35.6 192 19.6 653 66.6
100 157.6 16.1 383 39.1 248 25.3 744 75.9
40 100 308 37.2 660 67 432 44 1232 126.7 4000 3000 ≤30 15000

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 7 0.7 23 2.3 9 0.9 46 4.7 14000 8500 ≤20 15000
80 10 1 30 3.1 14 1.4 61 6.2
100 10 1 36 3.7 14 1.4 70 7.2
17 50 21 2.1 44 4.5 34 3.4 91 9 10000 7300 ≤20 20000
80 29 2.9 56 5.7 35 3.6 113 12
100 31 3.2 70 7.2 51 5.2 143 15
20 50 33 3.3 73 7.4 44 4.5 127 13 10000 6500 ≤20 20000
80 44 4.5 96 9.8 61 6.2 165 17
100 52 5.3 107 10.9 64 6.5 191 20
120 52 5.3 113 11.5 64 6.5 191 20
160 52 5.3 120 12.2 64 6.5 191 20
25 50 51 5.2 127 13 72 7.3 242 25 7500 5600 ≤20 20000
80 82 8.4 178 18 113 12 332 34
100 87 8.9 204 21 140 14 369 38
120 87 8.9 217 22 140 14 395 40
32 50 99 10 281 29 140 14 497 51 7000 4800 ≤20 20000
80 153 16 395 40 217 22 738 75
100 178 18 433 44 281 29 841 86
40 100 345 35 738 75 484 49 1400 143 5600 4000 ≤20 20000

The Basics of a Cyclone Gearbox

Besides being compact, cycloidal speed reducers also offer low backlash and high ratios. Because of the small size of the drive, they are ideal for applications where space is a problem.helical gearbox

Involute gear tooth profile

Almost all gears use an involute gear tooth profile. This profile has a single curve, which means that the gear teeth do not have to be aligned closely with each other. This profile is smooth and can be manufactured easily.
Cycloid gears have a combination of epicycloid and hypocycloid curves. This makes them stronger than involute gear teeth. However, they can be more expensive to manufacture. They also have larger reduction ratios. They transmit more power than involute gears. Cycloid gears can be found in clocks.
When designing a gear, you need to consider several factors. Some of these include the number of teeth, the tooth angle and the lubrication type. Having a gear tooth that is not perfectly aligned can result in transmission error, noise and vibration.
The tooth profile of an involute gear is usually considered the best. Because of this, it is used in a wide variety of gears. Some of the most common applications for this profile are power transmission gears. However, this profile is not the best for every application.
Cycloid gears require more complex manufacturing processes than involute gear teeth. This can cause a larger tooth cost. Cycloid gears are used for less noisy applications.
Cycloid gears also transmit more power than involute gears. This can cause problems if the radii change tangentially. However, the shape is more simple than involute gears. Involute gears can handle centre sifts better.
Cycloid gears are less susceptible to transmission error. Cycloid gears have a convex surface, which makes them stronger than involute teeth. Cycloid gears also have a larger reduction ratio than involute gears. Cycloid teeth do not interfere with the mating teeth. However, they have a smaller number of teeth than involute teeth.

Rotation on the inside of the reference pitch circle of the pins

Whether a cycloidal gearbox is designed for stationary or rotating applications, the fundamental law of gearing must be observed: The ratio of angular velocities must be constant. This requires the rotation on the inside of the reference pitch circle of the pins to be constant. This is achieved through a series of cycloidal teeth, which act like tiny levers to transmit motion.
A cycloidal disc has N lobes which are rotated by three lobes per rotation around N pins. The number of lobes on a cycloidal disc is a significant factor in determining the transmission ratio.
A cycloidal disc is driven by an eccentric input shaft which is mounted to an eccentric bearing within an output shaft. As the input shaft rotates, the cycloidal disc moves around the pins of the pin disc.
The drive pin rotates at a 40 deg angle while the cycloidal disc rotates on the inside of the reference pitch circle of pins. As the drive pin rotates, it will slow the output motion. This means that the output shaft will complete only three revolutions with the input shaft, as opposed to nine revolutions with the input shaft.
The number of teeth on a cycloidal disc must be small compared to the number of surrounding pins. The disc must also be constructed with an eccentric radius. This will determine the size of the hole which will be required for the pin to fit between the pins.
When the input shaft is turned, the cycloidal disc will rotate on the inside of the reference pitch circle of roller pins. This will then transmit motion to the output shaft. The output shaft is supported by two bearings in an output housing. This design has low wear and torsional stiffness.helical gearbox

Transmission ratio

Choosing the right transmission ratio of cycloidal gearbox isn’t always easy. You might need to know the size of your gearbox before you can make an educated choice. You may also need to refer to the product catalog for guidance. For example, CZPT gearboxes have some unique ratios.
A cycloidal gear reducer is a compact and high-speed torque transmission device that reverses the direction of angular movement of the follower shaft. It consists of an eccentric cam positioned inside a cycloidal disc. Pin rollers on the follower shaft fit into matching holes in the cycloidal disc. In the process, the pins slide around the holes, in response to wobbling motion. The cycloidal disc is also capable of engaging the internal teeth of a ring-gear housing.
A cycloidal gear reducer can be used in a wide variety of applications, including industrial automation, robotics and power transmissions on boats and cranes. A cycloidal gear reducer is ideally suited for heavy duty applications with large payloads. They require specialized manufacturing processes, and are often used in equipment with precise output and high efficiency.
The cycloidal gear reducer is a relatively simple structure, but it does require some special tools. Cycloid gear reducers are also used to transmit torque, which is one of the reasons they are so popular in automation. Using a cycloidal gear reducer is a good choice for applications that require higher efficiency and lower backlash. It is also a good choice for applications where size is a concern. Cycloid gears are also a good choice for applications where high speed and high torque are required.
The transmission ratio of cycloidal gearbox is probably the most important function of a gearbox. You need to know the size of your gearbox and the type of gears it contains in order to make the right choice.

Vibration reduction

Considering the unique dynamics of a cycloidal gearbox, vibration reduction measures are required for a smooth operation. These measures can also help with the detection of faults.
A cycloidal gearbox is a gearbox with an eccentric bearing that rotates the center of the gears. It shares torque load with five outer rollers at any given time. It can be applied in many applications. It is a relatively inexpensive asset. However, if it fails, it can have significant economic impacts.
A typical input/output gearbox consists of a ring plate and two cranks mounted on the input shaft. The ring plate rotates when the input shaft rotates. There are two bearings on the output shaft.
The ring plate is a major noise source because it is not balanced. The cycloidal gear also produces noise when it meshes with the ring plate. This noise is generated by structural resonance. Several studies have been performed to solve this problem.
However, there is not much documented work on the condition monitoring of cycloidal gearboxes. In this article, we will introduce modern techniques for vibration diagnostics.
A cycloidal gearbox with a reduced reduction ratio has higher induced stresses in the cycloidal disc. In this case, the size of the output hole is larger and more material is removed from the cycloidal disc. This increase in the disc’s stresses leads to higher vibration amplitudes.
The load distribution along the width of the gear is an important design criterion. Using different gear profiles can help to optimize the transmission of torque. The contact stress of the cycloidal disc can also be investigated.
To determine the amplitude of the noise, the frequency of the gear mesh is multiplied by the shaft rate. If the RPM is relatively stable, the frequency can be used as a measure of magnitude. However, this is only accurate at close to failure.helical gearbox

Comparison with planetary gearboxes

Several differences exist between cycloidal gearboxes and planetary gearboxes. They are related to gear geometry and manufacturing processes. Among them, there are:
– The output shaft of a cycloidal gearbox has a larger torque than the input shaft. The rotational speed of the output shaft is lower than the input shaft.
– The cycloid gear disc rotates at variable velocity, while the planetary gear has a fixed speed. Consequently, the cycloid disc and output flange transmission accuracy is lower than that of the planetary gears.
– The cycloidal gearbox has a larger gripping area than the planetary gear. This is an advantage of the cycloidal gearbox in that it can handle larger loads.
– The cycloid profile has a significant impact on the quality of contact meshing between the tooth surfaces. The width of the contact ellipses increases by 90%. This is a result of the elimination of undercuts of the lobes. In this way, the contact force on the cycloid disc is decreased significantly.
– The cycloid drive has lower backlash and high torsional stiffness. This allows a cycloidal drive to be more stable against shock loads. The cycloid drive is also a compact design, which is ideally suited for applications with large transmission ratios.
– The output hub of the cycloid gearbox has movable pins and rollers. These components are attached to the ring gear in the outer gearbox. The output shaft is also turned by the planet carrier. The output hub of the cycloid system is composed of two parts: the ring gear and the output flange.
– The input shaft of a cycloidal gearbox is connected to a servomotor. The input shaft is a cylindrical element that is fixed to the planet carrier.
China Mini Electric Motor Cycloidal Helical Harmonic Gear Speed Reducer Transmission Gearbox     cycloidal drive gearboxChina Mini Electric Motor Cycloidal Helical Harmonic Gear Speed Reducer Transmission Gearbox     cycloidal drive gearbox
editor by czh 2023-01-14

China Machines Speed Reduction Gear Box with Break System Motor cycloidal drive mechanism

Solution Description

HangZhou Sihai Equipment Co., Ltd.has been specialising in the manufacture and export of RV series worm gearboxes and other power transmission goods for several years, devoted to supply to our consumers excellent top quality goods in aggressive rates. The primary products are RV sequence worm gear velocity reducers, UD series mechanical velocity variators, G3 collection helical geared motors and the specially designed reducers for polishing machines. Our products are widely employed in the mechanical apparatus for foodstuff, ceramics, deal, chemical, printing, and plastics, and so forth.

Xihu (West Lake) Dis.d by the idea, “Quality is the quite key.”. the business proceeds in strict good quality control to all the merchandise, complying with the needs of ISO9001:2008, and certificated, which has enabled our items to have enjoyed the successful revenue, popularity and good popularity amid the marketplaces of Europe, Mid-east, and Souteast Asia..

Innovation, very good quality, customers’ satisfication, and superb provider are the principles of the firm. All buyers at home and overseas are warmly welcome to contact us and negotiate for mutual company growth.

US $96
/ Piece
|
1 Piece

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated|


Freight Cost Calculator

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Cycloidal

###

Customization:
US $96
/ Piece
|
1 Piece

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated|


Freight Cost Calculator

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Cycloidal

###

Customization:

Cyclone Gearbox Vs Involute Gearbox

Whether you’re using a cycloidal gearbox or an involute gearbox for your application, there are a few things you should know. This article will highlight some of those things, including: cycloidal gearbox vs involute gearbox, weight, compressive force, precision, and torque density.helical gearbox

Compressive force

Several studies have been carried out to analyze the static characteristics of gears. In this article, the authors investigate the structural and kinematic principles of a cycloidal gearbox. The cycloidal gearbox is a gearbox that uses an eccentric bearing inside a rotating frame. It has no common pinion-gear pair, and is therefore ideal for a high reduction ratio.
The purpose of this paper is to investigate the stress distribution on a cycloidal disc. Various gear profiles are investigated in order to study the load distribution and dynamic effects.
Cycloidal gearboxes are subject to compression and backlash, which require the use of proper ratios for the bearing rate and the TSA. The paper also focuses on the kinematic principles of the reducer. In addition, the authors use standard analysis techniques for the shaft/gear and the cycloidal disc.
The authors previously worked on a rigid body dynamic simulation of a cycloidal reducer. The analysis used a trochoidal profile on the cycloidal disc periphery. The trochoidal profile is obtained from a manufacturing drawing and takes into account the tolerances.
The mesh density in the cycloidal disc captures the exact geometry of the parts. It provides accurate contact stresses.
The cycloidal disc consists of nine lobes, which move by one lobe per rotation of the drive shaft. However, when the disc is rotated around the pins, the cycloidal disc does not move around the center of gravity. Therefore, the cycloidal disc shares torque load with five outer rollers.
A low reduction ratio in a cycloidal gearbox results in a higher induced stress in the cycloidal disc. This is due to the bigger hole designed to reduce the material inside the disc.

Torque density

Several types of magnetic gearboxes have been studied. Some magnetic gearboxes have a higher torque density than others, but they are still not able to compete with the mechanical gearboxes.
A new high torque density cycloidal magnetic gearbox using Halbach rotors has been developed and is being tested. The design was validated by building a CPCyMG prototype. The results showed that the simulated slip torque was comparable to the experimental slip torque. The peak torque measured was a p3 = 14 spatial harmonic, and it corresponds to the active region torque density of 261.4 N*m/L.
This cycloidal gearbox also has a high gear ratio. It has been tested to achieve a peak torque of 147.8 Nm, which is more than double the torque density of the traditional cycloidal gearbox. The design incorporates a ferromagnetic back-support that provides mechanical fabrication support.
This cycloidal gearbox also shows how a small diameter can achieve a high torque density. It is designed with an axial length of 50mm. The radial deflection forces are not serious at this length. The design uses a small air gap to reduce the radial deflection forces, but it is not the only design option.
The trade-off design also has a high volumetric torque density. It has a smaller air gap and a higher mass torque density. It is feasible to make and mechanically strong. The design is also one of the most efficient in its class.
The helical gearing design is a newer technology that brings a higher level of precision to a cycloidal gearbox. It allows a servomotor to handle a heavy load at high cycle rates. It is also useful in applications that require smaller design envelopes.helical gearbox

Weight

Compared to planetary gearboxes, the weight of cycloidal gearboxes is not as significant. However, they do provide some advantages. One of the most significant features is their backlash-free operation, which helps them deliver smooth and precise movement.
In addition, they provide high efficiency, which means that servo motors can run at higher speeds. The best part is that they do not need to be stacked up in order to achieve a high ratio.
Another advantage of cycloidal gearboxes is that they are usually less expensive than planetary gearboxes. This means that they are suitable for the manufacturing industry and robotics. They are also suited for heavy-duty robots that require a robust gearbox.
They also provide a better reduction ratio. Cycloidal gears can achieve reduction ratios from 30:1 to 300:1, which is a huge improvement over planetary gears. However, there are few models available that provide a ratio below 30:1.
Cycloidal gears also offer more resistance to wear, which means that they can last longer than planetary gears. They are also more compact, which helps them achieve high ratios in a smaller space. The design of cycloidal gears also makes them less prone to backlash, which is one of the major shortcomings of planetary gearboxes.
In addition, cycloidal gears can also provide better positioning accuracy. In fact, this is one of the primary reasons for choosing cycloidal gears over planetary gears. This is because the cycloid disc rotates around a bearing independently of the input shaft.
Compared to planetary gearboxes, cycloidal gears are also much shorter. This means that they provide the best positioning accuracy. They are also 50% lighter, meaning that they have a smaller diameter.

Precision

Several experts have studied the cycloidal gearbox in precision reducers. Their research mainly focuses on the mathematical model and the method for precision evaluation of cycloidal gears.
The traditional modification design of cycloidal gears is mainly realized by setting various machining parameters and center position of the grinding wheel. But it has some disadvantages because of unstable meshing accuracy and uncontrollable tooth profile curve shape.
In this study, a new method of modification design of cycloidal gears is proposed. This method is based on the calculation of meshing backlash and pressure angle distribution. It can effectively pre-control the transmission accuracy of cycloid-pin gear. It can also ensure good meshing characteristics.
The proposed method can be applied in the manufacture of rotary vector reducers. It is also applicable in the precision reducer for robots.
The mathematical model for cycloidal gears can be established with the pressure angle a as a dependent variable. It is possible to calculate the pressure angle distribution and the profile pressure angle. It can also be expressed as DL=f(a). It can be applied in the design of precision reducers.
The study also considers the root clearance, the backlash of gear teeth and the profile angle. These factors have a direct effect on the transmission performance of cycloidal gear. It also indicates the higher motion accuracy and the smaller backlash. The modified profile can also reflect the smaller transmission error.
In addition, the proposed method is also based on the calculation of lost motion. It determines the angle of first tooth contacts. This angle is an important factor affecting the modification quality. The transmission error after the second cycloid method is the least.
Finally, a case study on the CZPT RV-35N gear pair is shown to prove the proposed method.helical gearbox

Involute gears vs cycloidal gears

Compared to involute gears, cycloidal gears have a lower noise, less friction, and last longer. However, they are more expensive. Cycloidal gears can be more difficult to manufacture. They may be less suitable for certain applications, including space manipulators and robotic joints.
The most common gear profile is the involute curve of a circle. This curve is formed by the endpoint of an imaginary taut string unwinding from the circle.
Another curve is the epicycloid curve. This curve is formed by the point rigidly attached to the circle rolling over another circle. This curve is difficult to produce and is much more expensive to produce than the involute curve.
The cycloid curve of a circle is also an example of the multi-cursor. This curve is generated by the locus of the point on the circle’s circumference.
The cycloid curve has the same diameter as the involute curve, but is tangentially curving along the circle’s diameter. This curve is also classified as ordinary. It has several other functions. The FE method was used to analyze the strain state of cycloidal speed reducers.
There are many other curves, but the involute curve is the most widely used gear profile. The involute curve of a circle is a spiraling curve traced by the endpoint of an imaginary tautstring.
Involute gears are a lot like a set of Lego blocks. They are a lot of fun to play with. They also have a lot of advantages. For example, they can handle center sifts better than cycloidal gears. They are also much easier to manufacture, so the cost of involute teeth is lower. However, they are obsolete.
Cycloidal gears are also more difficult to manufacture than involute gears. They have a convex surface, which leads to more wear. They also have a simpler shape than involute gears. They also have less teeth. They are used in rotary motions, such as in the rotors of screw compressors.
China Machines Speed Reduction Gear Box with Break System Motor     cycloidal drive mechanismChina Machines Speed Reduction Gear Box with Break System Motor     cycloidal drive mechanism
editor by czh 2022-12-26

China Gphq Xb Bwd/Xwd Transmission Gear Boxes Servo Motor Sumitomo Drive Pin Wheel Reducer Planetary Cyclo Cycloid Cycloidal Gearbox cycloidal drive generator

Item Description

XWD2/ XWD3/XWD4/XWD5/XWD6/XWD7 /XWD8 gearbox with ac motor 

Cycloidal reducer adopts meshing cycloid pin equipment, planetary transmission principle, so usually also named planetary cycloid reducer.  Planetary cycloidal reducer can be broadly utilized in petroleum, environmental safety, chemical, cement, transportation, textile, pharmaceutical, foodstuff, printing, lifting, mining, metallurgy, construction, power era and other industries.
      As a generate or reduction equipment,  the machine is divided into horizontal, vertical, biaxial and straight league assembly way,and so on.  Its unique secure framework can replace ordinary cylindrical gear reducer and worm gear reducer in numerous cases. As a result, planetary cycloid gear reducer is commonly used in various industries and fields, and is normally welcomed by the bulk of users.

XWD/BWY cycloid  reducer motor details:

B sequence:

BW basedoard horizontal installed double axes type 

BL flange vertical installed double axes sort

BWY  basedoard horizontal put in motor immediate-link type

BLY   flange vertical put in motor direct-link type

X series:

XW basedoard horizontal installed double axes sort

XL flange vertical installed double axes kind

XWD basedoard horizontal installed motor direct-link kind

XLD flange vertical put in motor direct-link variety

FAQ
1, Q:what is actually your MOQ for ac gearbox motor  ?
A: 1pc is ok for every single kind electrical gear box  motor 

2, Q: What about your guarantee for your induction velocity reducer motor ?
A: 1 yr ,but other than gentleman-created destroyed

three, Q: which payment way you can take ?
A: TT, western union .

4, Q: how about your payment way ?
A: 100%payment in sophisticated much less $5000 ,30% payment in innovative payment , 70% payment ahead of sending above $5000.

5, Q: how about your packing of pace reduction motor  ?
A: plywood case ,if dimensions is tiny  ,we will pack with pallet for significantly less 1 container 

6, Q: What information must be given, if I purchase electrical helical geared motor  from you ?
A: rated energy,  ratio or output pace,sort ,voltage , mounting way , amount , if a lot more is greater , 
 

US $30-200
/ Piece
|
5 Pieces

(Min. Order)

###

Application: Motor, Machinery, Agricultural Machinery
Function: Speed Changing, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Single-Step

###

Customization:
US $30-200
/ Piece
|
5 Pieces

(Min. Order)

###

Application: Motor, Machinery, Agricultural Machinery
Function: Speed Changing, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Single-Step

###

Customization:

Developing a Mathematical Model of a Cyclone Gearbox

Compared to planetary gearboxes, cycloidal gearboxes are often seen as the ideal choice for a wide range of applications. They feature compact designs that are often low friction and high reduction ratios.helical gearbox

Low friction

Developing a mathematical model of a cycloidal gearbox was a challenge. The model was able to show the effects of a variety of geometric parameters on contact stresses. It was able to model stiction in all quadrants. It was able to show a clear correlation between the results from simulation and real-world measurements.
The model is based on a new approach that enables modeling stiction in all quadrants of a gearbox. It is also able to display non-zero current at standstill. Combined with a good simulation algorithm, the model can be used to improve the dynamic behaviour of a controlled system.
A cycloidal gearbox is a compact actuator used for industrial automation. This type of gearbox provides high gear ratios, low wear, and good torsional stiffness. In addition, it has good shock load capacity.
The model is based on cycloidal discs that engage with pins on a stationary ring gear. The resulting friction function occurs when the rotor begins to rotate. It also occurs when the rotor reverses its rotation. The model has two curves, one for motor and one for generator mode.
The trochoidal profile on the cycloidal disc’s periphery is required for proper mating of the rotating parts. In addition, the profile should be defined accurately. This will allow an even distribution of contact forces.
The model was used to compare the relative performance of a cycloidal gearbox with that of an involute gearbox. This comparison indicates that the cycloidal gearbox can withstand more load than an involute gearbox. It is also able to last longer. It is also able to produce high gear ratios in a small space.
The model used is able to capture the exact geometry of the parts. It can also allow a better analysis of stresses.

Compact

Unlike helical gearing, compact cycloidal gearboxes can provide higher reduction ratios. They are more compact and less weighty. In addition, they provide better positioning accuracy.
Cycloid drives provide high torque and load capacity. They are also very efficient and robust. They are ideal for applications with heavy loads or shock loads. They also feature low backlash and high torsional stiffness. Cycloid gearboxes are available in a variety of designs.
Cycloid discs are mounted on an eccentric input shaft, which drives them around a stationary ring gear. The ring gear consists of many pins, and the cycloidal disc moves one lobe for every rotation of the input shaft. The output shaft contains roller pins, which rotate around holes in the cycloidal disc.
Cycloid drives are ideally suited to heavy loads and shock loads. They have high torsional stiffness and high reduction ratios, making them very efficient. Cycloid gearboxes have low backlash and high torque and are very compact.
Cycloid gearboxes are used for a wide variety of applications, including marine propulsion systems, CNC machining centers, medical technology, and manipulation robots. They are especially useful in applications with critical positioning accuracy, such as surgical positioning systems. Cycloid gearboxes feature extremely low hysteresis loss and low backlash over extended periods of use.
Cycloid discs are usually designed with a reduced cycloid diameter to minimize unbalance forces at high speeds. Cycloid drives also feature minimal backlash, a high reduction ratio, and excellent positioning accuracy. Cycloid gearboxes also have a long service life, compared to other gear drives. Cycloid drives are highly robust, and offer higher reduction ratios than helical gear drives.
Cycloid gearboxes have a low cost and are easy to print. CZPT gearboxes are available in a wide range of sizes and can produce high torque on the output axis.helical gearbox

High reduction ratio

Among the types of gearboxes available, a high reduction ratio cycloidal gearbox is a popular choice in the automation field. This gearbox is used in applications requiring precise output and high efficiency.
Cycloid gears can provide high torque and transmit it well. They have low friction and a small backlash. They are widely used in robotic joints. However, they require special tools to manufacture. Some have even been 3D printed.
A cycloidal gearbox is typically a three-stage structure that includes an input hub, an output hub, and two cycloidal gears that rotate around each other. The input hub mounts movable pins and rollers, while the output hub mounts a stationary ring gear.
The input shaft is driven by an eccentric bearing. The disc is then pushed against the ring gear, which causes it to rotate around the bearing. As the disc rotates, the pins on the ring gear drive the pins on the output shaft.
The input shaft rotates a maximum of nine revolutions, while the output shaft rotates three revolutions. This means that the input shaft has to rotate over eleven million times before the output shaft is able to rotate. The output shaft also rotates in the opposite direction of the input shaft.
In a two-stage differential cycloidal speed reducer, the input shaft uses a crank shaft design. The crank shaft connects the first and second cycloidal gears and actuates them simultaneously.
The first stage is a cycloidal disc, which is a gear tooth profile. It has n=7 lobes on its circumference. Each lobe moves around a reference pitch circle of pins. The disc then advances in 360deg steps.
The second stage is a cycloidal disc, also known as a “grinder gear”. The teeth on the outer gear are fewer than the teeth on the inner gear. This allows the gear to be geardown based on the number of teeth.

Kinematics

Various scholars have studied the kinematics of cycloidal gearbox. They have developed various approaches to modify the tooth profile of cycloidal gears. Some of these approaches involve changing the shape of the cycloidal disc, and changing the grinding wheel center position.
This paper describes a new approach to cycloid gear profile modification. It is based on a mathematical model and incorporates several important parameters such as pressure angle, backlash, and root clearance. The study offers a new way for modification design of cycloid gears in precision reducers for robots.
The pressure angle of a tooth profile is an intersegment angle between the normal direction and the velocity direction at a meshing point. The pressure angle distribution is important for determining force transmission performance of gear teeth in meshing. The distribution trend can be obtained by calculating the equation (5).
The mathematical model for modification of the tooth profile can be obtained by establishing the relationship between the pressure angle distribution and the modification function. The dependent variable is the modification DL and the independent variable is the pressure angle a.
The position of the reference point A is a major consideration in the modification design. It ensures the force transmission performance of the meshing segment is optimal. It is determined by the smallest profile pressure angle. The position is also dependent on the type of gear that is being modified. It is also influenced by the tooth backlash.
The mathematical model governing the pressure angle distribution is developed with DL=f(a). It is a piecewise function that determines the pressure angle distribution of a tooth profile. It can also be expressed as DL=ph.
The pressure angle of a tooth is also an angle between the common normal direction at the meshing point and the rotation velocity direction of the cycloid gear.helical gearbox

Planetary gearboxes vs cycloidal gearboxes

Generally, there are two types of gearboxes that are used for motion control applications: cycloidal gearbox and planetary gearbox. Cycloid gearboxes are used for high-frequency motions, while planetary gearboxes are suitable for low-speed applications. Both are highly accurate and precise gearboxes that are capable of handling heavy loads at high cycle rates. But they have different advantages and disadvantages. So, engineers need to determine which type of gearbox is best suited for their application.
Cycloid gearboxes are commonly used in industrial automation. They provide excellent performance with ratios as low as 10:1. They offer a more compact design, higher torque density and greater overload protection. They also require less space and are less expensive than planetary gearboxes.
On the other hand, planetary gearboxes are lightweight and offer a higher torque density. They are also capable of handling higher ratios. They have a longer life span and are more precise and durable. They can be found in a variety of styles, including square-framed, round-framed and double-frame designs. They offer a wide range of torque and speed capabilities and are used for numerous applications.
Cycloid gearboxes can be manufactured with different types of cycloidal cams, including single or compound cycloidal cams. Cycloid cams are cylindrical elements that have cam followers that rotate in an eccentric fashion. The cam followers act like teeth on the internal gear. Cycloid cams are a simple concept, but they have numerous advantages. They have a low backlash over extended periods of time, allowing for more accurate positioning. They also have internal compressive stresses and an overlap factor between the rolling elements.
Planetary gearboxes are characterized by three basic force-transmitting elements: ring gear, sun gear, and planet gear. They are generally two-stage gearboxes. The sun gear is attached to the input shaft, which in turn is attached to the servomotor. The ring gear turns the sun gear and the planet gear turns the output shaft.
China Gphq Xb Bwd/Xwd Transmission Gear Boxes Servo Motor Sumitomo Drive Pin Wheel Reducer Planetary Cyclo Cycloid Cycloidal Gearbox     cycloidal drive generatorChina Gphq Xb Bwd/Xwd Transmission Gear Boxes Servo Motor Sumitomo Drive Pin Wheel Reducer Planetary Cyclo Cycloid Cycloidal Gearbox     cycloidal drive generator
editor by czh 2022-12-24

China Motor Speed Reducer Gearbox Drive Gear Reducer Cycloidal Gear Reducer gearbox engine

Warranty: 3 years, 1 Year
Applicable Industries: Other
Weight (KG): 10 KG
Customized support: OEM, ODM, OBM
Gearing Arrangement: Bevel / Miter
Output Torque: 150~28000 Nm
Input Speed: 1450 RPM
Output Speed: 7.8~290 RPM
Product name: Gear Reducer
Application: Machine Tool
Color: Blue
Type: Reduction Motor
Ratio: 5-100
Keyword: China Gear Reducer
Structures: Bearing + Gear + Box
Material: Cast Iron
Input Form: Shaft Input
Packaging Details: Wooden case packing
Port: ZheJiang

Specification

itemvalue
Warranty3 years
Applicable IndustriesOther
Weight (KG)10KG
Customized supportOEM, ODM, OBM
Gearing ArrangementBevel / Miter
Output Torque150~28000 Nm
Input Speed1450 RPM
Output Speed7.8~290 RPM
Place of OriginChina
ZheJiang
Brand Nameshede
Product nameGear Reducer
ApplicationMachine Tool
Warranty1 Year
ColorBlue
TypeReduction Motor
Ratio5-100
KeywordChina Gear Reducer
StructuresBearing + Gear + Box
MaterialCast Iron
Input FormShaft Input

What Is a Gearbox?

A gearbox is the mechanical system of an automobile that allows a vehicle to change gear smoothly. This arrangement of gears is highly complex, which helps to provide a smooth gear change. In this article, we will explore some of the different types of gearboxes, including the Epicyclic gearbox, the Coaxial helical gearbox, and the Extruder helical gearing. These are three of the most common types of gearboxes used in automobiles.
gearbox

Gearboxes

Gearboxes help drivers choose the appropriate gear for the conditions. A lower gear produces the least speed, while a higher gear gives the maximum torque. The number of gears used in a gearbox varies to meet different demands on the road and load. Short gearing provides maximum torque, while tall gearing offers higher top speeds. These features combine to improve the driveability of a vehicle. But what is a gearbox?
The gearbox has a slew of components, including the bearings and seals. Among these components is the gearbox, which is subjected to wear and tear due to metal-to-metal contact. As a result, gearboxes require close monitoring. Various tests are used to assess the condition of gears, such as corrosion and wear. Proactive tests emphasize wear, contamination, and oil condition. However, there are also proactive tests, such as the ferrous density test and the AN test, which monitor additive depletion and abnormal wear.
The separating force is a key factor for the design of a gearbox. The primary radial measurement point should be oriented to monitor normal forces. The secondary measurement point should be located in the opposite direction of rotation from the primary radial measurement point. The separating force generated by a helical gear set is called tangential force. The primary and secondary radial measurement points should be positioned so as to provide information about both normal and tangential forces.
Manual gearboxes are often manual. The driver can control the synchromesh by using a selector rod. This rod moves the synchromesh to engage the gear. Reverse gears are not synchromesh because they are used only when the vehicle is at a standstill. In older cars, the first gear often lacked synchromesh due to cost or lack of torque. Drivers could still use first gear with a double-declutch.

Coaxial helical gearbox

The R series rigid tooth flank helical gearbox features high versatility and good combination. They have a wide range of motor power and allow for fine classification of transmission ratios. The R series gearbox has several advantages, including high efficiency, long service life, and low vibration. This series of gearbox can be combined with a wide range of reducers and variators. Its size and high performance makes it an ideal choice for applications that require maximum torque and load transfer.
The main feature of a helical gearbox is that it presents a fixed velocity ratio, even if the center gaps are not perfectly set. This is sometimes referred to as the fundamental rule of gearing. A helical gearbox is similar to paper spur gears in terms of radial pitch, since the shafts in the helical gearbox cross at an angle. The center gap of a helical gearbox is the same for both the left and right-handed counterparts.
The EP Series is another popular model of a Coaxial helical gearbox. This series has high torque and a maximum reduction ratio of 25.6:1. It is an ideal choice for the plastic industry, and CZPT offers an extensive range of models. Their center distance ranges from 112 mm to 450 mm. The EP Series has several models with different center distances. In addition to high torque and efficiency, this gearbox has low noise and vibration, and it is easy to assemble and disassemble.
Another type of Coaxial helical gearboxes is the planetary gearbox. They have a high efficiency and power density. Unlike coaxial helical gearboxes, planetary gearboxes have an axis on the same direction as the output shaft. They are easy to integrate into existing drive trains. In addition, they are compact and easy to integrate with existing drive trains. For servo applications, they are another great choice.
gearbox

Epicyclic gearbox

An epicyclic gearbox is a type of automatic gearbox used to drive cars. Its primary advantage is its compact design, and it is more reliable and efficient than manual gearboxes. It is comprised of a sun gear and two planetary gears, encased in a ring gear called the Annulus. This system is useful for drivers who need to shift gears frequently, as they will become tired if the gears are suddenly changed.
An epicyclic gearbox consists of three different types of gears: ring gear, sun gear, and annular ring gear. The ring gear is the outermost gear and has angular-cut teeth on its inner surface. It is used in conjunction with planetary gears to provide high-speed ratios to vehicles. The sun gear also reverses the direction of the output shaft. This helps reduce transmission error.
An epicyclic gearbox uses multiple planets to transfer power between the planets. This type of gearbox is lightweight and features a high power density. This gearbox has several benefits over a standard single-stage parallel axis gearbox, including multiple load paths, unequal load sharing, and phased meshing. Furthermore, epicyclic gearboxes require more complex transmission error optimisation than their counterparts, including more than one stage.
The objective of epicyclic gearbox research is to provide the lowest transmission error possible. The process includes an initial design and detailed specification. The system is defined by its load spectrum and required ratio. Deflections of the elastic mesh are calculated to understand their strength and how much energy the system can handle. Finally, micro-geometric corrections minimize transmission error. These improvements are crucial to the overall efficiency of an epicyclic gearbox.

Extruder helical gearing

The helix in an extruder helical gearing is fixed at an angle, enabling more interaction with the shaft in the same direction as it moves. As a result, the shaft and the bearing are in constant contact for a long period of time. Typically, extruder helical gearing is used in applications where there is low excitement, such as steel, rolling mills, conveyors, and the oil industry. The bevel gear train also plays a role in these applications.
The CZPT AEX extruder drive gear is specifically developed for this specific application. The gears are compact and lightweight and offer exceptional power density and a long service life. These extruder gears are highly reliable, and they can be used in a wide range of applications, including rubber processing, food production, and recycling plants. CZPT offers both standard and custom gearing for your extruder.
Another advantage of helical gearing is its versatility. Since the helical gearing teeth are inclined at a specific angle, they can be adjusted to meet the specific needs of a given application. These gears also have the advantage of eliminating noise and shock from straight teeth. Unlike other gearing types, they are able to achieve a wide range of loads, from small to large. These helical gears are very durable and are the best option for high-load applications.
In addition to this, asymmetric helical gears have increased flexibility, while asymmetrical helical gears have lower flexural stiffness. The ratio of teeth to the shaft has a positive effect on the strength of the gear. Furthermore, asymmetrical helical gears are easier to manufacture. But before you purchase your next extruder gear, make sure you know what you’re getting into.
gearbox

1 speed gearbox

CZPT Group Components produces the one speed gearbox. It has the potential to make cars more efficient and environmentally friendly. The gear ratio of a car’s drivetrain is crucial for reaching maximum power and speed. Typically, a one-speed gearbox delivers a maximum of 200 hp. But the speed at which a car can reach this power must be high to get the full benefit from the electric motor. So, how can a one-speed gearbox improve the speed and torque of a car?
A one-speed gearbox is a mechanical device used to switch between second and third gears. It can include multiple gear sets, such as a shared middle gear for switching between second and third gears. It can also have an intermediate gear set that represents a switchable gear in both partial transmissions. The invention also includes a mechanism that makes it easier to change gears. The patent claims are detailed below. A typical one-speed gearbox may include two parts.
Generally, a one-speed gearbox will have up to seven forward gears, with each of these corresponding to a different speed. A one-speed gearbox can have five different gear sets and five different gear levels. It can have synchronized gear sets or last-shelf gear sets. In either case, the gears are arranged in a way that maximizes their efficiency. If the gears are placed on opposite sides of a car, the transmission may be a two-speed one.
CZPT Transmission specializes in the production of high-speed gearboxes. The company’s Milltronics HBM110XT gearbox machine is the perfect tool for this job. This machine has a large working table and a heavy-duty load capacity, making it a versatile option for many kinds of applications. There are also a wide variety of CZPT gearboxes for the automotive industry.

China Motor Speed Reducer Gearbox Drive Gear Reducer Cycloidal Gear Reducer     gearbox engineChina Motor Speed Reducer Gearbox Drive Gear Reducer Cycloidal Gear Reducer     gearbox engine
editor by czh